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Time and Quantum Gravity 
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The role of  time in the interpretation of quan tum mechanics and quantum gravity 
are analyzed, and changes to the form of quan tum gravity to make it interpretable 
are suggested. 

How can one interpret the "wave function of the universe" which arises 
in the canonical approach to quantum gravity via the "Wheeler -DeWit t"  
equation? In particular, is the absence of time in that approach a key to 
the difficulties which have surrounded that approach? Can one recast 
quantum gravity in a form which includes an explicit t ime? These concerns 
have led R. Wald and myself  to examine the role of  time in the interpretation 
of ordinary quantum mechanics. Out of  this reexamination has arisen the 
feeling that one needs to reintroduce a coordinate time explicitly into the 
wave function of quantum gravity, rather than, as is usually done, to write 
the wave function as explicitly independent of  the coordinates. One implica- 
tion of this approach is that the wave function will not obey the usual 
constraint equations exactly. It turns out that there exists at least one model 
which is presented here in which the constraints are almost satisfied, with 
the exception of an unknown cosmological constant 2. 

In ordinary quantum mechanics, time plays a number  of roles. On one 
level, in the Schr6dinger equation, time is that which drives the dynamics 
of  the system, which creates and destroys correlations between the various 
dynamical degrees of  freedom of the physical system under consideration. 
However,  this is not the aspect I want to emphasize here as it also plays a 
crucial role in the interpretation of quantum mechanics. 

1CIAR Cosmology Program, Department  of  Physics, University of  British Columbia,  
Vancouver, British Columbia,  Canada  V6T 2A6. 

2See Unruh and Wald (1989) and Unruh (1989), where the ideas presented here are elaborated. 
An earlier version of the present paper is Unruh (1988). 
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There are, in particular, two roles which time plays in ordinary quantum 
theory which I want to emphasize here. These two are that time gives us 
an ordering parameter  on the experiments that have been done, and it 
divides the sets of possible observations into sets which are internally 
mutually contradictory. To clarify the ordering property of  time, it is best 
to give an example. 

A professor has his favorite sp in- l /2  system which he stores in his lab, 
being careful to ensure that it is completely shielded from any outside 
influences such as a magnetic field (i.e., the Hamiltonian for the spin is 
zero). One day he goes in at 9 o'clock and measures the spin of  this particle 
in the z direction and finds the value to be +1/2.  Later that day, at 
11 o'clock, he goes into the lab and measures the y value of the spin and 
finds it to be +1/2.  Now his graduate student comes to him, and says that 
she measured the spin at 10 o'clock in a direction which lay in the y - z  
plane, and which made an angle of  0 with the y direction. She asks her 
professor if he could tell her what the probabili ty is that the value she 
measured was +1/2.  Had she asked before he had made his measurement  
at 11, we could all have answered her easily. However, the knowledge of 
the outcome of the experiment at 11 has surely changed the probabilities. 
For example, if 0 had been 0 (i.e., So = S~), then the probabili ty must be 
unity that she would have measured So to be +1/2,  since any other value 
would not have led to the value of +1/2  for the Sv measurement  which was 
made at 11. Similarly, had she chosen 0 = ~-/2 (So =Sz),  the probability 
must again have been unity to get 1/2 because of the prior S~ = 1/2 result 
at 9 o'clock. 

In particular, it is possible to calculate the probability for an arbitrary 
angle 0 and one finds 

P(S0 = 1/2) = (1 + cos 0 + sin 0 + sin 2 0) /(2 + sin 20) 

It is of interest to note that there exists no density matrix p such that 

P(So = 1/2) = tr(p(So + 1/2)) 

where So + 1/2 is the projection operator onto the state with So = 1/2. There 
thus exists no wave function which encodes the information ~:.hich we 
already have about the system (namely the outcomes of the 9 and 11 o 'clock 
experiments), and which allows us to calculate the probabilities of  the 
outcomes of the experiment that was done on the system between those 
two times. Note also that this would not have been true if the student had 
done her experiment at 12 o'clock, say. Then we know how to calculate the 
probabilities 

P(So = 1/2) = cos 220 

and the wave function which is the +1 /2  eigenstate of  Sv will give this result. 
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In this particular problem, time has had no dynamical role ( H  = 0), 
but it plays a crucial role in the interpretation of the experiments. 3 It has 
provided an ordering parameter  on the experiments, an ordering parameter  
which was crucial to our being able to answer the question raised by the 
student. Had she not told us when she did the experiment, we would not 
have been able to answer her question at all. It is, furthermore, the absence 
of  such an ordering parameter  which is one of the key problems in interpret- 
ing the usual "wave function of the universe" arising out of  the usual 
approach in canonical quantum gravity. 

The second role that time plays is encoded in the aphorism "Time is 
that which allows contradictory things to occur," or, in the words of  a 
recent Family Circus comic strip, "Time is God ' s  way of preventing every- 
thing from happening at once." Because of the concern expressed by 
Herakleitus on the role of  time and on the constant clash between, and the 
expression of, opposites in time, I will call this the Herakleitian property 
of  time. At any o n e  time, the statement that a cup is both green and red 
makes no sense; these are mutually contradictory attributes. At any one 
time, a single particle can have only one position. However, at different 
times one particle can have many different positions, as can the cup have 
many different colors. This feature of time is again of  crucial importance 
in the structure of  quantum theory. It is the uniqueness of  position for a 
particle, the mutually contradictory nature of  many positions, that gives us 
the Hilbert space structure for the wave function. It is because positions x 
and y are mutually contradictory outcomes for the position at any one time 
that we can say that the probabili ty of  obtaining either x or y is the sum 
of  the probabilities of  x and y. I f  we have a complete set of  such mutually 
contradictory outcomes (i.e., the outcome of  the measurement m u s t  be one 
of the outcomes in our set--e.g.,  the particle must have some position), 
then the probabil i ty that some one of the outcomes is obtained must be 
unity. Thus, the sum of probabilities over all possible outcomes is 1. Having 
postulated that the probabil i ty of  some one outcome is I~F(x)l 2, this gives 
us the requirement that I I'.Ir(x)l 2 d x  = 1. I f  one experiment could have given 
us two separate values for the position, we could no longer assume that the 
probabili ty of  x or y is the sum of their separate probabilities. It is time in 
its Herakleit ian aspect that allows us to regard the measurements as mutually 
exclusive. At different times, the particle can have an arbitrary number  of 

3For a formula which gives the probabilities of  some outcome, given the knowledge of the 
outcome of  other experiments,  both before and after the one of interest, see Unruh (1986). 
In that same volume is a very unusual  paper by Aharanov et aL (1986) in which they show 
that such intermediate-time predictions can produce some very unintuitive results, namely 
the possibility of  measuring a component  of  the spin of  a high-spin system which is larger 
than the max imum possible value. 
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posi t ions .  I f  we do  not  speci fy  at how many  t imes we are making  the 
m e a s u r e m e n t  o f  pos i t ion ,  we will have no s t ructure  that  we can put  on the  
space  o f  wave  funct ions .  It is the exclusivi ty  at one t ime that  phys ica l ly  
gives us the ma themat i ca l  Hi lbe r t  space.  

It is these  two roles o f  t ime that  are miss ing in the usual  fo rmula t ion  
o f  quan tum gravity.  4 The wave funct ion  obey ing  the W h e e l e r - D e W i t t  
equa t ion  is expl ic i t ly  i n d e p e n d e n t  o f  t ime.  What ,  then,  is the objec t  in t h e  
theo ry  which  is to p l ay  these  roles o f  t ime?  

There  are  at  least  two app roaches  to this quest ion.  The  first says that  
one of  the  degrees  o f  f r e edom of  the p r o b l e m  is to be r ega rded  not  as a 
dynamica l  var iab le  at all ,  bu t  ra ther  is to p l ay  the  role o f  t ime.  One is to 
choose  one  o f  the var iables ,  such as the t race o f  the extr insic  curvature  or  
the scale fac tor  g, as be ing  " t ime . "  In the quan t i za t ion  process ,  this var iab le  
is not  to be quant ized ,  but  left a C-number .  

The a l te rna t ive  a p p r o a c h ,  recent ly  a d v o c a t e d  by  Har t le ,  is to regard  
all var iab les  on an equal  foot ing,  choos ing  not  a specia l  t ime,  but  ra ther  
r ep lac ing  the role o f  t ime by  the read ings  o f  a c lock (the " c l o c k "  be ing  one 
o f  the d y n a m i c  systems one  is examining . )  

Both a p p r o a c h e s  l ead  to p rob lems .  The  key difficulty with the second  
choice  is that  we know tha t  even for  o r d i n a r y  q u a n t u m  systems,  no ideal  
clocks exist.  Because o f  the  pos i t iv i ty  o f  the H a m i l t o n i a n  for  all real  
dynamica l  systems,  the p robab i l i t y  o f  a c lock ' s  s topp ing  (i.e., showing  the 
same read ing  for  two different  t imes)  or  even o f  runn ing  b a c k w a r d  is a lways  
nonze ro  [see Unruh  and  W a l d  (1989) and  U n r u h  (1988, 1989) for  fur ther  
detai ls] .  One  therefore  has on a f u n d a m e n t a l  level a p r o b l e m  with bo th  o f  
the p roper t i e s  that  one needs  t ime to have in o rde r  to be able  to in te rpre t  
the wave funct ion .  

The key p r o b l e m  assoc ia ted  with the first is that  no g o o d  var iab le  to 
use as t ime has ever  emerged  from the cons ide ra t ion  o f  qua n tum gravity.  
Mos t  suffer f rom the p r o b l e m  that  even c lass ica l ly  they do  not  act much  
l ike t ime.  The  vo lume o f  the  universe ,  p r o p o r t i o n a l  in the usual  R o b e r t s o n -  
Wa lke r  cosmolog ies  to gl/2, grows and decreases  as t ime goes on even in 
the  classical  solut ions.  The mono ton i c i t y  o f  K, the t race o f  the extr insic  
curvature ,  depends  on the equat ions  o f  state for  the  mat ter ,  and  are  deter-  

4The recent concerns about the interpretation of such solutions to the Wheeler-DeWitt 
equations arose out of the proposal by Hawking and Hartle (1983) for a possible "'wave 
function for the universe." J. Hartle has recently published a number of papers and preprints 
in which he examines the role of time in ordinary quantum mechanics and in quantum gravity. 
Note in particular the lectures by him in Hartle (1986, 1987). He has also written a series of 
papers on quantum kinematics of spacetime (Hartle, 1988a-c) which are a lucid treatment 
of the subject of time and have had a very strong influence on my thoughts on the subject, 
even though our approaches are to an extent in conflict. I would like to thank him very much 
for having let me see drafts of these before publication. 
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mined by global considerations. Furthermore, we are not free to choose the 
variable which we will regard as time arbitrarily. Different choices can lead 
to different quantum mechanics. 5 

To illustrate, let me examine one of the standard toy models that is 
often used in these discussions of  quantum gravity. One of the key features 
of  gravity is its invariance under coordinate transformations. I will transform 
a standard dynamical system with dynamical variable x into a time- 
reparametrization-invariant system. In particular, I will do this by introduc- 
ing a new dynamical variable T and an arbitrary time coordinate r. Let us 
take the original system to be described by a Lagrangian L(dx/dt, x). We 
can make it time-reparametrization-invariant by introducing the new vari- 
able T and time z and defining a new dynamical Lagrangian by 

L'(T, T,~,x)= TL(2/T,x) (1) 

where the dot denotes d/dr. The classical dynamics of the x system will 
be identical to that of the original, with x now being a function of T(r) 
rather than t. 

We can find the Hamiltonian associated with L', and we get 

H ' =  ~r[PT + H(Px, x)] (2) 

where H(Px, x) is the Hamiltonian associated with L. Usually we would 
be able to eliminate T with respect to Pr, but the defining equation for Pr 
from the Lagrangian is just 

PT = -H(Px, x) 

Now, i/~ can be regarded as an arbitrary function of z and so it is 
usually written as N(r). We thus get the final form of the Hamiltonian 

H'= N[Pr+ H(Px, x)] 

Hamilton's equations now give us 

~=N, PT=O 
2 = N OH/OPx, p~ = - N  OH/Ox 

In addition, if we vary the action with respect to N, we get the equation 

Pr+H(Px, X)=O 

a constraint equation on the initial data. 

5See the very instructive paper by Rowher (1986), where he points out the problem in the 
usual "gauge" (coordinate) fixing procedure used in quantum gravity. In particular, the 
coordinate transformations between various forms of the coordinate-fixed quantum mechanics 
must be operator valued. 
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Tn quantizing this system, one could reverse the procedure, solve the 
classical equations for T and PT, substitute back into the action, and then 
quantize the resulting system in which only x and p~ are the quantum 
dynamical variables. 

Alternately, one can follow Dirac, and impose the constraint equation 
as an operator equation on the wave function: 

i O~/OT+ H(p~, x)q~ : 0 (3) 

This has the added benefit that the resulting �9 will also be independent of 
the arbitrary parameter r and of the function N(r ) .  The procedure is 
manifestly reparametrization invariant. 

There is, however, a third approach. Do not impose the constraints on 
the quantum level. Instead, write the usual quantum Schrfdinger equation 

i O~/Or = N[PT + H(P:,, x)]',P (4) 

The wave function will depend on T and x and on the combination Ndr.  
This latter combination is also reparametrization invariant, because under 
reparametrization N and ~" both change. 

Our wave function now contains some unknown functions, N and r. 
How can we use it to make predictions, since by assumption r is arbitrary 
and N is unknown? The answer is that when we make a measurement, we 
need both to determine the time T and measure the variable x. Assuming 
that we set up the initial state of the system properly (i.e., an eigenstate of 
T at the initial r which we can take as 0), our subsequent measurement of 
T will tell us what the combination N d r  is. We have 

~ (  N dr, T, x) = 6( T -  N dr)fb( N dr, x) 

and thus our measurement of T gives us N dr, and the state of the x system, 
given our measured value for T, can be written as &(T, x). This is true for 
the fixed value we measured for T, but the amplitude & for the x system 
is just that which one would have calculated if one had used equation (3), 
the constraint equation. 

Because the parameter time r gives one the usual ordering and 
Herakleitian properties one needs, there is no trouble in interpreting ~ or 
4). The integral over the former function squared with respect to T and x, 
or over the latter with respect to x, gives one the usual normalization. 

Let us contrast this with the second approach to quantization, where 
one imposes the constraint as a quantum condition on the wave function 
[equation (3)]. Here one would want to interpret q~(x, T) in the usual way, 
as giving, for example, the amplitude of finding the particle with position 
x at time T. The integral ]~(x, T)] 2 dx = 1 would be the usual normalization. 
The question one has to ask is what right we have to do this. T is not the 
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time, in the Herakleitian sense. It but is simply one of the dynamic degrees 
of freedom of the system. Why are we claiming that at a given T, the various 
possibilities for x are mutually exclusive? 

This is highlighted if we make a canonical transformation on the x, T 
variables, defining, for example,  

Y = ( T - x ), PY = P-r, X = x, Px  = Px + P r  

We again get a "constraint"  equation for ~ ,  

[ B y  + H ( P x  - Py ,  x ) ] ~  = 0 

Now, however, we cannot interpret I~(X,  y) ]2= ]~(x, t - x ) ]  2 as the proba- 
bility of  finding the position X for the particle at " t ime" Y.. The various 
values of  x are no longer mutually exclusive at a given value of Y. The x 
can have many different values at the same Y, or it could even have no 
value at a given Y. Hartle (1986, 1987, 1 9 8 8 a - c )  has in fact argued that the 
average number  different values that x will have for a given Y is infinite. 
One has thus lost the whole reason for the Hilbert space structure in terms 
of probabilities of outcomes of experiments. 

In this simple example,  it is of course clear that there is a "right" way 
to do the quantization. T is the preferred coordinate, for example, because 
the momentum conjugate to T occurs linearly in the Hamiltonian. The 
problem occurs in full force in quantum gravity, however, because there 
exists no preferred dynamical degree of freedom which one could single 
out as the time. 

It is often stated that the constraint is the direct consequence of 
reparametrizat ion invariance. In the Hamiltonian of equation (2) we have 
the additional parameter  N (which was originally T). One argues that under 
a change of parametrization of the theory, ~" =f(~-), one would expect the 
theory to remain the same. Under such a reparametrization, N changes, 
leading to the idea that the theory should be invariant under arbitrary 
changes in N. It is the variation with respect to N in the action which leads 
to the "constraint"  equation 

P r + H ( p ~ , x ) = O .  

Thus this equation is interpreted as being the direct consequence of 
reparametrization invariance of the theory. In the quantum system, imposi- 
tion of the constraint is seen as imposing the demand of reparametrization 
invariance on the quantum theory. 

There is, however, a problem with this idea. I f  we go back to the 
Lagrangian approach and institute a reparametrization of r such that the 
initial and final values of  ~- are left alone, one finds that the requirement 
of  reparametrization does not lead to any constraint. Ins tead it leads to the 
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condition 

dH(x, p) /dr  = 0 

One obtains this whether or not one regards T as a dynamic variable. 
Support  for this view that conservation of H(P~,, x) is the true consequence 
of reparametrization invariance also arises when one notices that the 
classical dynamics is left unchanged by adding a constant to the original 
Lagrangian. This leads to the new "constraint"  equation 

P r -  H(Pr,  x) = const, not 0 

Thus, reparametrization invariance does not imply the constraint. 
This observation has an immediate analog in the gravitational case. 

There, reparametrization invariance (coordinate invariance) implies not the 
equations G ~ = 0, the usual constraints of  general relativity, but ~v G~v =0 ,  
the Bianchi identities. 

Let us return to our toy problem. The variable T is somewhat strange. 
It was introduced as a dynamical variable, but it is not really the variable 
of  any physical system. If  we had 1000 different " x "  systems, they would 
all share the same T. It is not clear exactly how one would couple to or 
measure this dynamic variable. The question thus arises, is there any other 
way of introducing reparametrization invariance into our toy problem? We 
would like to have a toy problem with such invariance because we eventually 
want to understand quantum general relativity, where coordinate changes 
are the rule. The ans~ver is yes. Instead of regarding T as a dynamic variable, 
we simply introduce a C-number  function N into the Lagrangian 

s x) = NL(2 /N ,  x) 

Under a change of parametrization ~- '=f(7) ,  we demand that N ' =  
N/(df /d 'r) .  The Hamiltonian becomes 

H'(Px, x) = NH(P~, x) 

In this case the classical equations of  motion do not imply any constraint 
equations, and the variation of the action to give H = 0  is completely 
inappropriate.  

Quantization is straightforward in that we get the Schr6dinger equation 

i d 'F/dr = NH(Px, x ) ~  

Again, �9 will be a function of the ~', but only in the combination Ndr. This 
combination is obviously reparametrization invariant. 

Again one asks how one can make predictions with this wave function. 
The wave function contains both an arbitrary parameter  T and a function 
N which is unknown and unmeasurable. 
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At this point let us remark that this is a kind of problem which is well 
known in classical general relativity. There again the results of calculations 
give one objects which depend on arbitrary parameters, the spacetime 
coordinates. It was historically one of the hardest battles for the field to 
recognize that those solutions in terms of coordinates were in themselves 
useless. One had to recast those predictions into forms in which the coordin- 
ates could be eliminated from the problem. One used some of the dynamic 
variables to specify where one was physically in the spacetime, and then 
made predictions about the other variables. 

A similar procedure works here. Let me give an example. Let us 
introduce another system, which I will call a clock, with dynamic variables 
D and Pp.  The system is designed so that the dynamics of the variable D 
make it depend, say, linearly on the unknown quantity Nd% at least over 
some time period, and to some degree of approximation. Again, at some 
time z, which is unspecified a priori, one makes a measurement of D. Since 
the D system is a genuine dynamical system, one can imagine how one 
would measure D (in contrast with the case for the T variable in the previous 
model). One can then use the value obtained from that measurement to 
determine what N d z  is. This allows one then to make predictions about 
the other variables in the system. 

This procedure is well defined classically. One can design realistic 
physical apparatus one of  whose degrees of freedom is an exact linear 
function of  the time. However, in the quantum case, additional difficulties 
arise. The ability to use the measured value of D to determine N d~" will 
depend sensitively on the state of the clock. The state must be such that 
the determination of Nd-r from D is statistically significant. 

Let us take an example. Let the Hamiltonian for the system be 

H(PD, D, Px, x) = P2D/2M + h(Px, x) 

Choose the initial state of the system to be 

~o(D, x) = e x p [ - ( D 2 / ~ +  iMvD)] 4~(x) 

Defining t = N d% we find that 

�9 (t,/9, x) cc e x p [ - ( D  - vt)2/62(t) + imv(D - vt)] r x) 

where 62( t )= f~+2i t /M.  Now, at some unknown value for Ndr,  we 
measure D and find its value to be d. We can infer that t = N dr is given by 

t ~ - d / v +  6(d/v)/~v 

which will give us an accurate estimate for t if 6 << d. We can now replace 
t by d~ v in the wave function for x. Note that this will be valid only if the 
change in the wave function for x is small over times of order 3/v. The 
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wave function for x is then approximately given by 05 ( d /v ,  x). The amplitude 
for x given a measured value for D thus looks like the solution to "Wheeler-  
DeWitt"-type equation 

i 005/0D = (h(Px" x)/v)05 

Defining T = D/v,  we thus would get the same equation that we got in our 
other toy problem. 

There are significant differences between the two procedures. In this 
case, the relation between d and t is only approximate. The relation is 
obtained by statistical inference, rather than by defining the time to be D / v  
as an exact relation. The ability to perform this elimination of t in terms 
of d depends crucially on the state of the system, especially on the state of 
the clock. Had we chosen another initial state for the clock, e.g., an eigenstate 
of momentum, we would have been able to make absolutely no predictions 
for the x system, even after we had measured the value of the clock pointer. 
The predictive powers of the quantum system would have been null. 

I will briefly outline a model theory for gravity which has the feature 
of containing an explicit external time, but still corresponds closely to 
ordinary gravity. Further details are available in Unruh and Wald (1989) 
and Unruh (1988, 1989). The theory is a revival of one suggested by Einstein 
(1919). 

In this theory, the metric g,~ is not an unconstrained symmetric tensor, 
but rather has the additional constraint that the determinant is defined to 
be unity. Although this could be accomplished for any solution of the usual 
Einstein equations by a suitable coordinate choice, the philosophy here is 
that this is a restriction on the variables of  the theory instead. The action 
for gravity is now the analogue of the usual Einstein action 

I = f R(g,~) d4x 

with classical equations of motion given by 

1 R,~ - ~Rg,~ = 0 

However, because of the Bianchi identities, one finds that any solution of 
these equations must also obey 

o r  

R ~ = O  

G,,. = Ag. .  

where A is an integration constant, rather than a given "coupling constant." 
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Because of the loss of  the determinant of  g as a potential dynamic variable, 
the constraints arising in the Hamiltonianization of this theory include only 
the " m o m e n t u m  constraints" and not the Hamiltonian constraint. Taking 
Y0 as the usual spatial metric in the ADM Hamiltonian formulation of  
general relativity, the nonzero Hamiltonian becomes 

H = I H~ NiHi d3X 
with a nontrivial Schr6dinger equation 

i O~/Ot = f Ho/y 1/2 d3x 
3 

where 14, are the usual momentum constraint operators, and H0 is the usual 
"energy" constraint function. In this formulation, the cosmological constant 
turns out to be the conjugate variable to the external time t. 

As shown in Unruh and Wald (1989) and Unruh (1988, 1989), there 
also exists another  secondary constraint [Ho/yl/2],i = 0 which encodes the 
fact that the cosmological constant is spatially independent.  

Minisuperspace models of  this theory have well-defined wave packets, 
which are normalizable and can be set up to follow semiclassical trajectories. 
Furthermore,  because of  the existence of an external time, the theory can 
be interpreted in exactly the way demonstrated above for normal non- 
relativistic quantum theories. Because the classical equations are so close 
to the usual theory, this theory also has the feature that one would expect 
to have a well-behaved classical limit. Perhaps its key flaws are, to a general 
relativist like myself, the explicit breaking of  coordinate invariance of the 
theory, and the introduction of a background, unquantized volume element 
to the theory. It is thus a backtracking from Einstein's vision of  making 
geometry fully dynamic. 

Let us contrast the two approaches to the wave function of quantum 
gravity. 

(i) The usual approach defines the wave function (which I will call 
the W D W  wave function) of  the universe as an explicitly t ime-independent 
solution to the Wheeler-DeWitt  equation, H 0 ~  = 0. Thus ~ is a function 
of  only the dynamical degrees of  freedom of  the system. Our approach 
defines the wave function as the solution of the usual Schr6dinger equation 

iO~/Ot=[f (Ho/yl/Z+NiHi) d3x]XI z 

It is invariant under spatial coordinate transformations and certain general 
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coordinate transformations, but loses general coordinate invariance under 
transformations which change the determinant of the metric. 

(ii) Given that the outcome of a series of measurements is known, it 
is unclear how to encode that knowledge into the WDW wave function. 
No analog to the "collapse of the wave function" seems to be applicable 
to the WDW wave function. At best only vague references to the necessity 
of the Everett interpretation of quantum mechanics have been given in this 
context. Because of the parameter time in our proposal, the usual rules of 
quantum measurement theory apply. 

(iii) The WDW is defined so as to satisfy the "constraint" equations. 
Thus, in any classical limit, one would expect Einstein's equations to be 
valid. In the example theory here with an explicit external time, the time 
coordinate leads only to an arbitrary cosmological constant, a sufficiently 
weak violation of Einstein's equations to be tolerated. 

(iv) Because the WDW function does obey the constraints exactly, it 
is difficult to know what the measurable quantities in that theory are. One 
might expect that only those quantities which commute with the constraints, 
only those quantities which are invariant under coordinate transformations, 
are actually measurable. This would, however, be problematic, because 
most of the dynamic variables in terms of which the theory is defined (e.g., 
the metric g~j) would then be unmeasurable. In fact, only those quantities 
which are constants of  the motion would be measurable, as they have to 
commute with the Hamiltonian. This is at least in apparent conflict with 
our ability to measure time-dependant quantities. 

Since the usual constraints are not satisfied in the sample theory, the 
Hamiltonian is not zero, and dynamic time-dependent quantities are in 
principle measurable. Only for those sets of measurements which would 
allow us to eliminate the time parameter would physical predictions for 
t ime-dependent quantities be meaningful, however. Time-independent 
quantities would always be measurable, and would again be physically 
meaningful. 

(v) For the WDW function, the definition of a Hilbert space structure 
(an inner product related to probabilities) is probably impossible. Again, 
no such problem arises for our model, since the parameter time t has the 
ordering and Herakleitian structures needed. This is borne out by the 
existence of  normalizable wave functions in the minisuperspace models. 

Although the model presented here of a possible way of reintroducing 
time into the equations of canonical quantum gravity is certainly not 
supposed to be the final word, it does show that such a program of 
demanding an external time to play the ordering and Herakleitian roles is 
a possible route of attack on the extremely difficult problems facing the 
formulation of an interpretable theory of quantum gravity. 
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